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Abstract

Given two geographic databases, a fusion algo-
rithm should produce all pairs of correspond-
ing objects (i.e., objects that represent the
same real-world entity). Four fusion algo-
rithms, which only use locations of objects,
are described and their performance is mea-
sured in terms of recall and precision. These
algorithms are designed to work even when lo-
cations are imprecise and each database rep-
resents only some of the real-world entities.
Results of extensive experimentation are pre-
sented and discussed. The tests show that
the performance depends on the density of the
data sources and the degree of overlap among
them. All four algorithms are much better
than the current state of the art (i.e., the one-
sided nearest-neighbor join). One of these four
algorithms is best in all cases, at a cost of a
small increase in the running time compared
to the other algorithms.

1 Introduction

When integrating data from two heterogeneous
sources, one is faced with the task of fusing dis-
tinct objects that represent the same real-world en-
tity. This is known as the object-fusion problem. Most
of the research on this problem has considered either
structured (i.e., relational) or semistructured (notably
XML) data (e.g., [1, 10]). In both cases, objects have
identifiers (e.g., keys). Object fusion is easier when
global identifiers are used; that is, when objects rep-
resenting the same entity are guaranteed to have the
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same identifier. When integrating data from heteroge-
neous sources, however, the object-fusion problem is
much harder, due to the lack of global identifiers.

When integrating geographic databases, spatial
(and non-spatial) properties should be used in lieu of
global identifiers. Since location is the only property
that is always available for spatial objects, we inves-
tigate location-based fusion for the case of two geo-
graphic databases. We assume that each database has
at most one object per real-world entity and locations
are given as points. Thus, the fusion is one-to-one.

Location-based fusion may seem to be an easy task,
since locations could be construed as global identifiers.
This is not so, however, for several reasons. First, mea-
surements introduce errors, and the errors in different
databases are independent of each other. Second, each
organization has its own approach and requirements,
and hence uses different measurement techniques and
may record spatial properties of entities using a dif-
ferent scale or a different structure. For example, one
organization might represent buildings as points, while
another could use polygonal shapes for the same pur-
pose. While an estimated point location can be de-
rived from a polygonal shape, it may not agree with
a point-based location in another database. A third
reason could be displacements that are caused by car-
tographic generalizations.

The motivation for this work was hands-on experi-
ence on integrating data sources about hotels in Tel-
Aviv. Two of the sources were organizations that ob-
tained their data by different and independent means.
Moreover, one organization represented buildings as
points while the other—as polygons. It turned out
that, in obvious cases, corresponding objects were
close to each other, but did not always have identical
locations. When locations were not sufficiently close,
hotel names could be used to determine some of the
corresponding pairs. However, there were also pairs
with similar, yet not identical names; and so, some
cases remained unresolved.

The current state of the art is the one-sided nearest-
neighbor join [9] that fuses an object from one dataset
with its closest neighbor in the other dataset. The ra-



tionale is that even in the presence of measurement
errors, different objects that represent the same en-
tity should have close locations. However, in the one-
sided nearest-neighbor join, every object from one of
the two datasets is matched with some object from the
other dataset, even if each dataset has objects that
should not be matched with any object from the other
dataset. Thus, the performance is poor when the over-
lap between the two dataset is small.

Another source of difficulty is due to the fact that
in the presence of errors, in a dense dataset, the right
match is not always the nearest neighbor. Conse-
quently, one also has to consider objects that are fur-
ther away. Moreover, there are mutual influences: If
an object a is matched with an object b, then both
cease to be candidates for possible matches with other
objects, thereby increasing the likelihood of other
matches between the other objects.

In this paper, we consider the problem of find-
ing one-to-one correspondences among objects that
have point locations and belong to two geographic
databases. We present several location-based algo-
rithms, with an increasing level of sophistication, for
finding corresponding objects that should be fused.
We also present the results of extensive tests that illus-
trate the weaknesses and strengths of these algorithms,
under varying assumptions about the error bounds,
the density of each spatial database and the degree of
overlap between these databases.

The main contribution of our work is in showing
that point locations can be effectively used to find cor-
responding objects. Since locations are always avail-
able for spatial objects and since a point is the simplest
form of representing a location, additional information
(e.g., names or polygonal locations) can only enhance
the strength of our location-based algorithms.

The outline of this paper is as follows. In Section 2,
we introduce the framework and formally define the
problem. Section 3 describes how to measure the qual-
ity of the result of a fusion algorithm. In that section,
we also discuss the factors that may influence the per-
formance of such an algorithm. Section 4 describes the
fusion algorithms that we propose. The tests and their
results are discussed in Section 5. In Section 6, we con-
sider further improvements. Section 7 describes how
to choose an optimal threshold value. Related work is
described in Section 8, and we conclude in Section 9.

2 Object Fusion

A geographic database stores spatial objects, or objects
for short. Each object represents a single real-world
geographic entity. We view a geographic databases
as a dataset of objects, with at most one object for
each real-world entity. An object has associated spa-
tial and non-spatial attributes. Spatial attributes de-
scribe the location, height, shape and topology of an
entity. Examples of non-spatial attributes are name,

address, number of rooms in a hotel, etc.
We assume that locations of objects are recorded

as points. This is the simplest form of representing
locations. More complex forms of recording locations
(e.g, polygons) can be approximated by points (e.g., by
computing the center of mass). The distance between
two objects is the Euclidean distance between their
point locations.

When two geographic databases are integrated, the
main task is to identify pairs of objects, one from each
dataset, that represent the same entity; the objects
in each pair should be fused into a single object. In
general, a fusion algorithm may process more than two
datasets and it generates fusion sets with at most one
object from each dataset. A fusion set is sound if all
its objects represent the same entity (but it does not
necessarily contain all the objects that represent that
entity). A fusion set is complete if it contains all the
objects that represent some entity (but it may also
contain other objects). A fusion set is correct if it is
both sound and complete.

In this paper, we consider the case of two datasets
and investigate the problem of finding the correct fu-
sion sets, under the following assumptions. First, in
each dataset, distinct objects represent distinct real-
world entities. This is a realistic assumption, since a
database represents a real-world entity as a single ob-
ject. Second, only locations of objects are used to find
the fusion sets. This is a practical assumption, since
spatial objects always have information about their lo-
cations. As explained earlier, location-based fusion is
not easy, since locations are not accurate.

We denote the two datasets as A = {a1, . . . , am}
and B = {b1, . . . , bn}. Two objects a ∈ A and b ∈ B
are corresponding objects if they represent the same
entity. A fusion set that is generated from A and B
is either a singleton (i.e., contains a single object) or
has two objects, one from each dataset. A fusion set
{a, b} is correct if a and b are corresponding objects.
A singleton fusion set {a} is correct if a does not have
a corresponding object in the other dataset.

In the absence of any global key, it is not always
possible to find all the correct fusions sets. We will
present novel algorithms that only use locations and
yet are able to find the correct fusion sets with a high
degree of success. We will discuss the factors that
effect the performance of these algorithms and show
results of testing them.

3 Quality of Results

3.1 Measuring the Quality

Similarly to information retrieval, we measure the
quality of a fusion algorithm in terms of recall and
precision. Recall is the percentage of correct fusion
sets that actually appear in the result (e.g., 91% of all
the correct fusion sets appear in the result). Precision



is the percentage of correct fusion sets out of all the
fusion sets in the result (e.g., 80% of the sets in the
result are correct).

Formally, let the result of a fusion algorithm have sr

fusion sets and let sr
c sets out those be correct. Let e

denote the total number of real-world entities that are
represented in at least one of the two datasets. Then
the precision is sr

c/sr and the recall is sr
c/e.

Note that applying the above definitions requires
full knowledge of whether two objects represent the
same entity or not. Clearly, this knowledge was avail-
able for the datasets that we used in the tests.

A similar definition of recall and precision was used
in [13]. However, they considered a somewhat differ-
ent problem, where the correct fusion sets are always
of size two and the fusion algorithm only produces fu-
sion sets of size two. Our definition is more general in
that it takes into account the possibility that a fusion
algorithm produces correct as well as incorrect single-
ton fusion sets.

Recall and precision could also be defined in a dif-
ferent way, by counting object occurrences instead of
fusion sets and entities. When there are only two
datasets (as in our case), there is no substantial dif-
ference between the two definitions. However, when
fusion sets may have more than two objects, counting
object occurrences seems to be a more suitable ap-
proach. The details of the alternative definitions are
beyond the scope of this paper.

3.2 Factors Affecting Recall and Precision

One factor that influences the recall and precision is
the error interval of each dataset. The error interval
is a bound on the distance between an object in the
dataset and the entity it represents. The density of a
dataset is the number of objects per unit of area. The
choice factor is the number of objects in a circle with
a radius that is equal to the error interval (note that
the choice factor is the product of the density and the
area of that circle). Intuitively, for a given entity, the
choice factor is an estimate of the number of objects in
the dataset that could possibly represent that entity.
It is more difficult to achieve high recall and precision
when the choice factor is large. Generally, we consider
a choice factor as large if it is greater than 1; otherwise,
it is small. Note that the above factors need not be
uniform in the geographic area that is represented by
a given dataset. In the general case, these factors may
have different values for different subareas.

Suppose that the datasets A and B have m and
n objects, respectively. Let c be the number of cor-
responding objects, i.e., the number of objects in all
the correct fusion sets of size 2. Note that the num-
ber of distinct entities that are represented in the two
datasets is m + n − (c/2). The overlap between A
and B is c/(m + n). The overlap is a measure of the
fraction of objects that have a corresponding object

in the other set. One of the challenges we faced was
to develop an algorithm that has high recall and pre-
cision for all degrees of overlap. Note that when the
two sets represent exactly the same set of entities, then
the overlap is maximal, i.e., 1. Another special case
is when one dataset covers the second dataset, i.e., all
the entities represented in the second dataset are also
represented in the first dataset. We tested the per-
formance of the algorithms on datasets with varying
degrees of overlap.

4 Finding Fusion Sets

In this section, we present methods for computing the
fusion sets of two datasets, A = {a1, . . . , am} and
B = {b1, . . . , bn}. The methods are based on the in-
tuition that two corresponding objects are more likely
to be close to each other than two non-corresponding
objects. The recall and precision of each method de-
pend on specific characteristics of the given datasets,
e.g., the choice factors of the datasets, the degree of
overlap, etc. The methods are compared in Section 5.

4.1 The One-Sided Nearest-Neighbor Join

We start by describing an existing method, the one-
sided nearest-neighbor join, which is commonly used in
commercial geographic-information systems [9]. Given
an object a ∈ A, we say that an object b ∈ B is the
nearest B-neighbor of a if b is the closest object to
a among all the objects in B. The one-sided nearest-
neighbor join of a dataset B with a dataset A produces
all fusion sets {a, b}, such that a ∈ A and b ∈ B is the
nearest B-neighbor of a. Note that every a ∈ A is in
one of the fusion sets, while objects of B may appear
in zero, one or more fusion sets. Thus, the one-sided
nearest-neighbor join is not symmetric, i.e., the result
of joining B with A is not necessarily equal to the
result of joining A with B.

We modify the above definition by adding to the
result the singleton set {b} for every b ∈ B that is
not the nearest neighbor of some a ∈ A. We do that
to boost up the recall of this method; otherwise, the
recall could be very low.

We say that a dataset A is covered by a dataset B if
every real-world entity that is represented in A is also
represented in B. Recall that the one-sided nearest-
neighbor join produces singleton fusion sets just for
one of the two datasets, even if neither dataset covers
the other one. Thus, the result will include wrong pairs
and the precision will be low.

In conclusion, the one-sided nearest-neighbor join is
likely to produce good approximations only when one
dataset is covered by the other and the choice factors
of the datasets are not large.



4.2 New Methods

In the following subsections, we present three novel
methods for computing fusion sets. Each method com-
putes a confidence value for every fusion set. The con-
fidence value indicates the likelihood that the fusion
set is correct.

The final result in each method is produced by
choosing the fusion sets that have a confidence value
that is above a given threshold value. The threshold
τ (0 ≤ τ ≤ 1) is chosen by the user. Typically, in-
creasing the threshold value will increase the precision
and lower the recall, while decreasing the threshold
value will increase the recall and decrease the preci-
sion. Controlling the recall and precision by means of
a threshold value is especially useful when the datasets
have large choice factors.

4.3 The Mutually-Nearest Method

Two objects, a ∈ A and b ∈ B, are mutually nearest
if a is the nearest A-neighbor of b and b is the nearest
B-neighbor of a. The intuition behind the mutually-
nearest method is that corresponding objects are likely
to be mutually nearest. Note that some objects of A
are not in any pair of mutually-nearest objects (and,
similarly, for some objects of B). It happens when the
nearest B-neighbor of a ∈ A is some b ∈ B, but the
nearest A-neighbor of b is different from a.

In the mutually-nearest method, a two-element fu-
sion set is created for each pair of mutually-nearest
objects. A singleton fusion set is created for each ob-
ject that is not in any pair of mutually-nearest objects.

Consider an object a ∈ A and let b be the nearest
B-neighbor of a. The second-nearest B-neighbor of A
is the object b′ ∈ B, such that b′ is the closest object
to a among all the object in B − {b}.

We will now define the confidence values of fusion
sets. First, consider a pair of mutually-nearest ob-
jects a ∈ A and b ∈ B. Let a′ be the second-nearest
A-neighbor of b, and let b′ be the second-nearest B-
neighbor of a. The confidence of the fusion set {a, b}
is defined as follows.

confidence({a, b}) =

1 −
distance(a, b)

min{distance(a, b′), distance(a′, b)}

That is, the confidence is the complement to one of
the ratio of the distance between the two objects to
the minimum among the distances between each object
and its second-nearest neighbor.

Now consider a fusion set with one element a ∈ A,
i.e., a is not in any pair of of mutually-nearest objects.
Let b be the nearest B-neighbor of a and let a′ be the
nearest A-neighbor of b. The confidence of the fusion
set {a} is defined as follows.

confidence({a}) = 1 −
distance(a′, b)

distance(a, b)

That is, the complement to one of the ratio of the dis-
tance between a′ and b to the distance between a and
b. Note that the confidence cannot be negative, since
it would imply that a, rather than a′, is the nearest
A-neighbor of b. The confidence of a fusion set with a
single element from b ∈ B is defined similarly.

The above formulas are used to compute the con-
fidence value, except when the distance upper bound
β rules out the possibility that a has a correspond-
ing object in the other set. The parameter β should
be equal to the sum of all possible errors in the loca-
tions of objects. Thus, if for all b ∈ B, it holds that
distance(a, b) > β, then we define confidence({a}) = 1
whereas for all b ∈ B, we define confidence({a, b}) = 0.

A threshold can be used to increase the precision of
the result by choosing only those fusion sets that have
a confidence value above the threshold. Consequently,
some objects from the given datasets may not be in
the result. A less restrictive approach is to discard
two-element fusion sets with a confidence value below
the threshold, but to add their elements as singletons.

The main advantage of the mutually-nearest
method over the traditional one-sided nearest-
neighbor join is lower sensitivity to the degree of over-
lap between the two datasets. In particular, it may
perform well even when neither datasets is covered by
the other one. However, it does not perform well when
the choice factors are large, since it only takes into
account the nearest neighbor and the second-nearest
neighbor, while ignoring other neighbors that might be
almost as close. In situations characterized by large
choice factors, it is likely that an object a will not be
the nearest neighbor of its corresponding object b. If
this is indeed the case, the pair a and b will not be
in the result even if the distance between a and b is
only slightly greater than the distance between b and
its nearest neighbor.

4.4 The Probabilistic Method

The probabilistic method was devised to perform well
when the choice factors are large. In such situations, it
is not enough to consider only the nearest and second-
nearest B-neighbors of an object a ∈ A, since there
could be several objects in B that are close to a.

In the probabilistic method, the confidence of a fu-
sion set {a, b} depends on the probability that b is the
object that corresponds to a, and that probability de-
pends inversely on the distance between a and b.

Consider two datasets A = {a1, . . . , am} and B =
{b1, . . . , bn}. For each object a ∈ A, we will define
the function Pa : B → [0, 1] that gives the probability
that a chooses b ∈ B. Similarly, for each b ∈ B, we
will define the probability function Pb : A → [0, 1].

Formally, the probability function Pai
is defined, as

shown below, in terms of the distance, the distance



decay factor α > 0 and the distance upper bound β.

Pai
(bj) =

distance(ai, bj)
−α

∑m

k=1 distance(ai, bk)
−α

(1)

The probability function Pbj
is defined similarly.

Although β is not shown explicitly in the above for-
mula, it has the following effect. If distance(ai, bj) >
β, then distance(ai, bj) is taken to be infinity, i.e.,

distance(ai, bj)
−α

= 0. Recall that the distance upper
bound should be equal to the sum of all possible errors
in the locations of objects. Thus, if distance(ai, bj) >
β, then ai and bj are not likely to be corresponding

objects and setting distance(ai, bj)
−α

to 0 is justified.
Note that the denominator of Formula (1) is 0 if the
distance between ai and every object of B is greater
than β. In this case, Pai

(bj) is defined to be 0.
Due to the numerator in the above formula (and the

fact that α > 0), the probability that ai chooses bj in-
creases when the distance between ai and bj decreases.
Thus, ai chooses its nearest B-neighbor with the high-
est probability. The parameter α determines the rate
of decrease in the probability as the distance increases.
We performed tests with different values for α and the
best results were obtained for α = 2. Due to the de-
nominator in the above formula, the probability that
ai chooses one of the bj ’s is 1, since

∑m

j=1Pai
(bj) = 1

(unless ai does not choose any bj , which happens when
the distance between ai and every bj ∈ B is greater
than β and hence Pai

(bj) = 0 for every bj ∈ B).
The confidence of the fusion set {ai, bj} is defined

as follows.

confidence({ai, bj}) =
√

Pai
(bj) · Pbj

(ai)

Note that Pai
(bj) · Pbj

(ai) is the probability that ai

chooses bj and bj chooses ai, i.e., the probability that
a and b are corresponding objects. The confidence is
defined as the square root of that probability in order
that it will not be too small.

The confidence of a fusion set that includes a single
object ai is defined as follows.

confidence({ai}) = 1 −
m

∑

k=1

(

√

Pai
(bk) · Pbk

(ai)
)

The rationale for this formula is that the sum of con-
fidences over all fusion sets that contain ai should be
equal to 1. Note that the singleton {ai} is given a con-
fidence value of 1 if the distance between ai and every
object of B is greater than the distance upper bound
β. Also note that in some rare cases the above formula
may give a value that is less than 0 and, in such cases,
we define confidence({ai}) = 0.

The result of the probabilistic method consists of
all fusion sets that have confidence values above the
threshold τ .

a1 b1 b2 a2

(a)

(b)
×××× ××××

a1 b1 b2××××

Figure 1: Adding a new object to a dataset.

When the choice factors are large, the probabilis-
tic method performs better than either the mutually-
nearest method or the one-sided nearest-neighbor join.
The reason for that is that the probabilistic method as-
signs a confidence value to every pair of objects. An-
other advantage of the probabilistic methods is the
ability to increase the recall by lowering the threshold.
Doing so, however, may cause an object to be in more
than one fusion set.

In the probabilistic method, the recall is low when
the overlap between the two datasets is small. In such
a situation, most of the singleton fusion sets, both the
correct ones and the incorrect ones, get similar con-
fidence values. Thus, lowering the threshold would
introduce into the result many incorrect singletons,
while at the same time many correct ones would still
remain below the threshold (unless the threshold be-
comes very low). If the threshold is high, it is likely
that many correct singletons would be missing from
the result. In conclusion, when the overlap is small, the
probabilistic method does not handle correctly objects
that should be in singletons. Therefore, this method
should only be used when the overlap between the
datasets is large.

4.5 The Normalized-Weights Method

The normalized-weights method is a variation of the
probabilistic method and it performs better when the
overlap is small or medium. As in the probabilistic
method, weights (i.e., confidence values) are given to
each (correct or incorrect) fusion set, based on the
same probability functions Pa and Pb that were defined
in the previous section (see Equation 1). The initial
weights are normalized by an iterative algorithm that
will be described in this section. This algorithm has
an effect of mutual influence between pairs of objects,
as illustrated in the next example.

Example 4.1 Consider the objects a1, b1 and b2

in Figure 1(a). We assume that a1 is an object in the
dataset A while b1 and b2 are objects in the dataset
B. Let the distance between a1 and b1 be 1 and let
the distance between a1 and b2 be 5. In the proba-
bilistic method, assuming a distance decay factor of 1
(i.e., α = 1), the probability that b1 will choose a1 is
1, since a1 is the only object of A. For a1, the proba-
bilities to choose b1 and b2 are 5

6 and 1
6 , respectively.



Thus, the confidence value that is given to the fusion

set {a1, b1} is
√

Pa1
(b1) · Pb1(a1) =

√

5
6 .

In Figure 1(b), the object a2 is added to the dataset
A. The distance between a2 and b2 is 1 and the
distance between a2 and b1 is 5. In the probabilis-
tic method, after adding a2, the confidence of the set

{a1, b1} is
√

Pa1
(b1) · Pb1(a1) =

√

5
6 · 5

6 = 5
6 <

√

5
6 .

Thus, the addition of a2 has reduced the confidence
of the fusion set {a1, b1}. This reduction is caused by
the fact that after the addition of a2, object b1 could
potentially be the corresponding object of either a1 or
a2, whereas before the addition of a2, only the corre-
spondence between b1 and a1 was possible. But the
addition of a2 also has an effect of increasing the like-
lihood of a correspondence between b1 and a1, because
b2 is now more likely to correspond to a2 than to a1

and, hence, the confidence of the fusion set {a1, b1}
should increase relatively to the confidence of the fu-
sion set {a1, b2}. In summary, the addition of a2 has
two opposite effects: one is an increase in the con-
fidence of the fusion set {a1, b1} and the other is a
decrease of that confidence. The probabilistic method
is only capable of capturing the second effect, whereas
the normalized-weights method captures both.

Next, we will describe the normalized-weights
method. Consider two datasets A = {a1, . . . , am} and
B = {b1, . . . , bn}. The probability functions Pai

(bj)
and Pbj

(ai) are defined as in Section 4.4. The match-
ings matrix M is an (m + 1) × (n + 1) matrix, such
that the element in row i and column j, denoted µij ,
is defined as follows.

µij =























Pai
(bj) · Pbj

(ai) : 1 ≤ i ≤ m, 1 ≤ j ≤ n
∏n

k=1(1 − Pbk
(ai)) : 1 ≤ i ≤ m, j = n + 1

∏m

k=1(1 − Pak
(bj)) : i = m + 1, 1 ≤ j ≤ n

0 : i = m + 1, j = n + 1

Note that in the first case (i.e., the top line) of the
above definition, µij is assigned the probability that
ai and bj mutually choose each other. In each row
i, the element in the last column (j = n + 1) gives
the probability that ai is not chosen by any b ∈ B.
Similarly, in each column j, the element in the last
row (i = m + 1) gives the probability that bj is not
chosen by any a ∈ A.

A row (or a column) r is normalized if s = 1, where
s is the sum of all the elements of r. We can al-
ways normalize r by dividing each element by s (since
s > 0). The normalization algorithm is a sequence of
iterations over M , such that in each iteration, the first
m rows and the first n columns are normalized one by
one in some order. Note that the elements of the last
column are changed when the rows are normalized, but
the last column itself is not normalized; similarly for
the last row.

Let M (0) denote the matrix M , as it was defined
above, and let M (k) denote the matrix after k iter-
ations. It was shown by Sinkhorn [14, 15] that the
normalization algorithm converges and the result does
not depend upon the order of normalizing rows and
columns in each iteration. We terminate the normal-
ization algorithm when the sum of each row and each
column, except for the last row and the last column,
is different from 1 by no more than some very small
ε > 0 (in the tests, ε was equal to 0.001).

Let M (t) denote the matrix upon termination of the
iteration algorithms. The confidence of the fusion set
{ai, bj} is the value in row i and column j of M (t).
The confidence of the fusion set {ai} is the value in
row i and column n + 1 of M (t). The confidence of
the fusion set {bj} is the value in column j and row

m + 1 of M (t). Given a threshold τ , the result of the
normalized-weights method consists of all the fusion
sets with confidence values above the threshold τ .

The normalized-weights method gives good results
when the overlap between the datasets is medium or
small. However, the results are not as good as those of
the probabilistic method when the overlap is large, be-
cause the weights that are assigned to singletons (i.e.,
the weights in the last row and in the last column)
are not normalized. Consequently, these weights re-
main rather large even when they should be almost
zero (i.e., when the overlap is large). In Section 6, we
discuss how to improve this method by normalizing all
the rows and columns of M .

4.6 Tuning the Methods

The performance of the three new methods, which
were introduced in the previous sections, can be tuned
by choosing appropriate values for the threshold, the
distance decay factor and the distance upper bound.

The threshold τ controls the precision and recall.
Increasing the threshold increases the precision while
decreasing the threshold increases the recall.

The distance decay factor α controls the effect of
distant neighbors in either the probabilistic method
or the normalized-weights method. In either method,
the probability that an object a chooses some object
from the other set is split among all the objects of the
other set. This probability might be split among many
objects, including far away objects that are really no
more than “background noise.” By choosing α > 1,
the effect of far away objects decreases exponentially.
Thus, increasing α eliminates background noise. How-
ever, increasing α too much can cause these methods
to act like the mutually-nearest method, i.e., pairs of
objects that are not mutually nearest will be ignored.

The distance upper bound β determines which two-
element fusion sets {ai, bj} are a priori deemed incor-
rect, because the distance between ai and bj is too far.
In practice, the value of β should be an upper-bound



Figure 2: Hotels and tourist attractions in Tel-Aviv
(the objects of MUNI are depicted by + and the ob-
jects of MAPA are depicted by •).

estimate for the sum of all possible errors in the loca-
tions of objects.

5 Testing and Comparing the Methods

We tested the different methods using real-world
datasets as well as randomly-generated datasets. The
two real-world datasets describe hotels and other
tourist attractions in Tel-Aviv. One dataset, called
MUNI, was extracted from a digital map that was
made by the City of Tel-Aviv. The second dataset,
called MAPA, was extracted from a digital map that
was made by the Mapa Corp. The randomly-generated
datasets were created using a random-dataset genera-
tor that we implemented.

5.1 Results for Real-World Datasets

In the MUNI and MAPA datasets, each object has a
name, although in MUNI the names are in English and
in MAPA the names are in Hebrew. The correctness
of the results was checked using the specified names
of the objects. However, only locations were used for
computing the fusion sets.

The MAPA dataset has 86 objects and the MUNI
dataset has 73 objects. A total of 137 real-world en-
tities are represented in these datasets and 22 enti-
ties appear in both datasets. The mutually-nearest
method was tested with a threshold τ = 0. The prob-
abilistic and the normalized-weights methods were
tested with an optimal threshold value (see Section 7).
The distance upper bound β was 150 meters and the
distance decay factor α was 2. There were 40 objects
in MAPA and 6 objects in MUNI without any neighbor
in the other dataset at a distance of β or less.

The two datasets are depicted in Figure 2. The per-
formance results are given in Table 1. Note that the
table describes both the one-sided nearest-neighbor
join of MUNI with MAPA (first column) and the one-
sided nearest-neighbor join of MAPA with MUNI (sec-
ond column). The one-sided nearest-neighbor join per-
formed much worse than the other methods, while the
normalized-weights method had the best performance.

5.2 Random-Dataset Generator

There are not sufficiently many real-world datasets to
test our algorithms under varying degrees of density
and overlap. Moreover, in real-world datasets, it is not
always possible to determine accurately the correspon-
dence between objects and real-world entities. Thus,
we implemented a random-dataset generator, which
is a two-step process. First, the real-world entities
are randomly generated. Second, the objects in each
dataset are randomly generated, independently of the
objects in the other dataset.

For the first step, the user specifies the coordinates
of a square area, the number of entities in that area and
the minimal distance between entities. The generator
randomly chooses locations for the entities, according
to a uniform distribution. The generator verifies that
entities are not too close to each other, i.e., the dis-
tance between entities is greater than the minimal dis-
tance specified by the user. This is done to enforce re-
alistic constraints; for example, the distance between
two buildings cannot be just a few centimeters.

For the second step, the user specifies the number
of objects in the datasets and the error interval. The
creation of a random object has two aspects. First,
the object is randomly associated with one of the real-
world entities that were created in the first step (at
most one object, in each dataset, corresponds to any
given entity). Second, the location of the object is ran-
domly chosen, according to the normal distribution, in
a circle with a center that is equal to the location of
the corresponding entity and a radius that is equal to
the error interval.

Note that the two datasets have an equal number
of objects. However, in each dataset, the association
of objects with entities and the locations of objects
are chosen randomly and independently of the other
dataset. By changing the number of objects, it is easy
to control the overlap between the two randomly gen-
erated datasets. For example, if each dataset has 500
objects while the number of entities is 500, then there
is a complete overlap. However, if there are 50,000
entities, then the overlap between the two datasets is
very small, with a very high probability.

5.3 Results for Random Datasets

We have experimented with many randomly-generated
datasets, but in this section we only describe a few
tests that demonstrate the main conclusions about the



Joining MAPA objects Joining MUNI objects Mutually Probabilistic Normalized
with nearest neighbors with nearest neighbors Nearest Weights
from MUNI from MAPA

Result Size 120 119 124 137 129
Recall 0.38 0.48 0.77 0.80 0.85
Precision 0.43 0.56 0.85 0.80 0.90

Table 1: Performance of the fusion algorithms for datasets of hotels and tourist attractions in Tel-Aviv.

(a) 100 objects in each dataset. (b) 500 objects in each dataset.

(c) 1000 objects in each dataset. (d) An enlarged fragment of a pair of datasets.

Figure 3: A visual view of the random pairs of datasets, with 100, 500 and 1000 objects.

performance of each method. The following parame-
ters were given to the random-dataset generator. A
square area of 1, 350 × 1, 350 meters, 1,000 entities, a
minimal distance of 15 meters between entities, and
an error interval of 30 meters for each datasets. The
above parameters imply that if a dataset represents all
1,000 entities, then the choice factor is 1.55 and each
entity occupies, on the average, an area of 1,822 sq m.

In the tests described below, the 1,000 real-world
entities were created once and then three pairs of
datasets were randomly generated (see Figure 3). The
three pairs had 100, 500 and 1,000 objects in each
dataset, respectively. Thus, each pairs had a different
degree of overlap and density (1,000 objects in each
dataset means a complete overlap). To get a sense of

the difficulty in finding the correct fusion sets, an en-
larged fragment of the pair of datasets from Figure 3(c)
is depicted in Figure 3(d), where an entity identifier is
attached to each object.

The recall and precision of each method were mea-
sured for every pair of datasets. In all the methods,
the distance upper bound β was 60 meters and the
error interval was 30 meters. In the mutually-nearest
method, the threshold τ was 0, since it gave the high-
est or close to the highest recall. For the datasets with
100 objects, the recall and the precision were 0.68 and
0.81, respectively; for 500 objects, they were 0.72 and
0.77, respectively; and for 1,000 objects, they were 0.74
and 0.63, respectively.

For the probabilistic method and the normalized-
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(a) Probabilistic with
100 objects.

0

0.2

0.4

0.6

0.8

1

0.
05

0.
16

0.
27

0.
38

0.
49 0.
6

0.
71

0.
82

0.
93

(b) Normalized-weights
with 100 objects.
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(c) Improved normal-
ized-weights with 100.
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(d) Combined method
with 100 objects.
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(e) Probabilistic with
500 objects.
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(f) Normalized-weights
with 500 objects.
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(g) Improved normal-
ized-weights with 500.
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(h) Combined method
with 500 objects.
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(i) Probabilistic with
1,000 objects.
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(j) Normalized-weights
with 1,000 objects.
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(k) Improved normal-
ized-weights with 1,000.
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(l) Combined method
with 1,000 objects.

Figure 4: Recall (dotted line) and precision (solid line) as a function of the threshold value.

weights method (as well as for two additional methods
that are explained in Section 6), Figure 4 presents the
recall and the precision as a function of the threshold.
Tests were made with different values for the distance
decay factor (i.e., α = 0.5, 1, 2, 3). We only show the
results for α = 2, since this choice was the best for
both methods under all circumstances.

The main conclusions from the tests are as follows.
When the overlap between the datasets is small, the
mutually-nearest and the normalized-weights methods
give good results. The probabilistic method does not
perform well in this case, because it does not find the
correct singletons and instead creates incorrect pairs.
For a medium overlap, the best results are given by
the normalized-weights method. This is demonstrated
in the case of 500 objects in each dataset. When the
overlap is large, the best results are given by the proba-
bilistic method. The normalized-weights method does
not perform well in this case, because singletons get
weights (i.e., confidence values) that are too large.

We will now give a detailed analysis of the graphs
in Figure 4. Essentially, a method performs well if it
assigns low confidence values to incorrect fusion sets
and high confidence values to correct ones. Most of the
graphs in Figure 4, except for 4(a), 4(b) and 4(j), ex-
hibit this phenomenon. In the low range of threshold
values, a small increase of the threshold value elimi-
nates many incorrect fusion sets and only a few cor-
rect ones. Thus, the precision rises sharply while the
recall declines slowly. In the high range of threshold
values, a small increase of the threshold value elimi-
nates many correct fusion sets and only a few incorrect
ones. Thus, the precision rises slowly while the recall
declines sharply. Also note that the precision and the
recall change more sharply as the overlap grows. A
bigger overlap means a bigger density, which causes
more pairs to get confidence values that are close to
each other.

Figures 4(a) and 4(b) show the performance of the
probabilistic and the normalized-weights methods in



the case of a small overlap. In that case, many correct
singletons get low confidence values while many incor-
rect pairs get high confidence values. Thus, when a low
threshold value is increased, many correct singletons
are eliminated and the recall declines sharply. The
precision remains about the same, since many incor-
rect fusion sets are also eliminated. In the high range
of threshold values, a small increase of the threshold
value eliminates many incorrect pairs and the precision
rises sharply while the recall remains about the same.
In the medium range of threshold values, there is very
little change in the recall and the precision, because
the confidence values are either very low or very high,
as a result of the low density (i.e., an object has only
a few close neighbors in the other dataset).

Figure 4(j) shows the performance of the normal-
ized-weights method in the case of a complete overlap
(i.e., there are no correct singletons). In that method,
the last row and the last column of the matching ma-
trix are not normalized and, consequently, many incor-
rect singletons get high confidence values, regardless of
the degree of overlap. Thus, the precision rises sharply
only in the high range of threshold values.

6 Complete Normalization

In this section, we will show how knowledge about the
degree of overlap between the datasets can improve
the normalized-weights method.

6.1 The Normalization Value

Ideally, the normalized-weights method should give to
singletons high confidence values when the overlap is
large and low confidence values when the overlap is
small. However, since the last row and the last col-
umn of the matching matrix are not normalized, the
confidence values of singletons tend to remain high in
any case. Recall that each entry in those row and col-
umn gives the probability that some object does not
have a corresponding object in the other set. Thus,
those row and column should not be normalized to 1.

Suppose that the datasets A and B have m and n
objects, respectively, and c is the number of real-world
entities that are represented in both datasets. Thus,
m − c objects of A and n − c objects of B should be
in singleton fusion sets. Ideally, an entry in either the
last row or the last column should be 1 if its corre-
sponding object is in a correct singleton, and should
be 0 otherwise. Consequently, we improve the normal-
ization algorithm by normalizing the last row to n− c
and the last column to m − c. Note that if n − c = 0
(or m− c = 0), then we just set all the elements in the
last row (or last column) to 0 and need not normalize
this row (or column) anymore.

The improved normalized-weights method always
performs better than all the other methods, as shown
in Figures 4(c), 4(g) and 4(k). Note that in these three
tests, the correct value of c was used.

6.2 Estimating the Overlap

The improved normalized-weights method requires a
good estimate for the number c of correct pairs of cor-
responding objects. If the association of objects with
entities in each dataset is independent of the other
dataset, then an approximation of c is given by

c ≈
m

e
·
n

e
· e

where e is the number of real-world entities and the
two datasets have m and n objects, respectively. If e is
not known, then a less accurate approximation of c can
be obtained by replacing e with the number of pairs
that are produced by the mutually-nearest method.

We conducted a series of tests with the following
parameters. The number of entities ranged from 500
to 1,000 in increments of 100. The size of the datasets
ranged from 50 to 500 in increments of 50. The min-
imal distance between entities was either 15, 25 or 35
meters. The conclusion from these tests is that c can
be approximated by

c ≈ 1.2p−
e

10

where p is the number of pairs that are produced by
the mutually-nearest method and e is the number of
entities. In particular, when p is approximately e

2 , then
c is also approximately e

2 .
The above formula suggests that p is a good esti-

mate for c. Thus, we also tested the combined method
that applies the improved normalized-weights method
with p as the estimate for c. The results for the random
datasets of Section 5.3 are shown in Figures 4(d), 4(h)
and 4(l). These results are almost as good as the re-
sults for the improved normalized-weights method, us-
ing the correct value of c.

7 Choosing the Threshold Value

For the mutually-nearest neighbor, a threshold value
of zero will give the highest recall with a good preci-
sion. For the other methods, choosing a good thresh-
old value is more complicated. A threshold value of
0.5 is a reasonable choice, since it usually gives results
with good recall and precision, and without duplicates
(i.e., each object appears in at most one fusion set).
Note that if the threshold is just above 0.5, then there
cannot be duplicates. An optimal threshold gives the
best combination of recall and precision. Formally, an
optimal threshold can be defined as the one that gives
the largest geometric average of the recall and the pre-
cision. In Figure 4, this is usually the threshold at the
intersection of the graphs of the recall and the preci-
sion.

We will now describe how to estimate the optimal
threshold without a priori knowledge of the correct fu-
sion sets. The idea is to minimize two types of errors.



0

0.2

0.4

0.6

0.8

1

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

(a) Probabilistic with
100 objects.
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(b) Improved normal-
ized-weights with 100.
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(c) Probabilistic with
500 objects.
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(d) Improved normal-
ized-weights with 500.

0

0.2

0.4

0.6

0.8

1

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

(e) Probabilistic with
1,000 objects.
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(f) Improved normal-
ized-weights with 1,000.

Figure 5: The error count (shown by a dashed line),
recall and precision as a function of the threshold.

A missing object is an object that does not appear in
any fusion set. A duplicate object is an object that ap-
pears in more than one fusion set. The error count is
the number of missing objects plus the number of du-
plicate occurrences of objects (if an object appears in k
fusions sets, then it is counted k−1 times). The thresh-
old value should be chosen so that the error count is
minimal. Figure 5 shows the error count as a function
of the threshold for two methods, using the random
datasets of Section 5.3 (the graphs for the other two
methods are similar). It can be seen that a thresh-
old value that minimizes the error count is close to
the optimal threshold. This was also confirmed for
the real-world datasets, MUNI and MAPA. For the
probabilistic method, the optimal threshold was 0.31
and the threshold that minimized the error count was
0.4. For these two threshold values, there was only
a small difference (0.796 vs. 0.784) between the geo-
metric averages of the recall and the precision. For

the normalized-weights method, the optimal thresh-
old was 0.43 and the threshold that minimized the er-
ror count was 0.45, while the geometric averages were
about the same (0.873 and 0.868). Thus, for a real pair
of datasets, the threshold value can be chosen by try-
ing several different values and choosing the one that
minimizes the error count.

8 Related Work

Map conflation is the process of producing a new map
by integrating two existing digital maps, and it has
been studied extensively in the last twenty years. Map
conflation starts by choosing some anchors, i.e., pairs
of points that represent the same location. A trian-
gular planar subdivision of the datasets with respect
to the anchors (using Delaunay triangulation) is per-
formed and a rubber-sheeting transformation is ap-
plied to each subdivision [4, 5, 6, 11, 12].

Map conflation cannot be applied without initially
finding some anchors. Thus, our methods can be used
as part of this process. Unlike map conflation, which is
a complicated process, our algorithms are most suit-
able for the task of online integration of geographic
databases using mediators (e.g., [2, 17]).

A feature-based approach to conflation, which is
similar to object fusion, has been studied in [13]. Their
approach is different from ours in that they find corre-
sponding objects based on both topological similarity
and textual similarity in non-spatial attributes. Once
some corresponding objects have been found, they con-
struct some graphs and use graph similarity to find
more corresponding objects.

In [3], topological similarity is used to find corre-
sponding objects, while in [7, 8, 16] ontologies are used
for that purpose.

The problem of how to fuse objects, rather than
how to find fusion sets, was studied in [10]. Thus,
their work complements ours.

9 Conclusion and Future Work

The novelty of our approach is in developing effi-
cient algorithms that find fusion sets with high recall
and precision, using only locations of objects. The
mutually-nearest method is an improvement of the ex-
isting one-sided nearest-neighbor join and it achieves
substantially better results.

We also developed a completely new approach,
based on a probabilistic model. We presented sev-
eral algorithms that use this model. The improved
normalized-weights method achieves the best results
under all circumstances. This method combines
the probabilistic model with a normalization algo-
rithm and information about the overlap between
the datasets. We showed that the mutually-nearest
method provides a good estimate for the degree of



overlap. We also showed how to tune the methods
and how to choose an optimal threshold value.

Several interesting problems remain for future work.
One problem is to deal with situations in which an
object from one set could correspond to many objects
in the other set. This may happen, for example, when
one dataset represents shopping malls while the other
dataset represents shops.

A second problem is to develop fusion algorithms
for more than two datasets. This problem is similar
to the previous one in that both require finding fusion
sets that have several, rather than just 2 objects. In
principle, this problem can be solved by a sequence of
steps, such that only two datasets are involved in each
step (where one of those two datasets is the result of
the previous step). However, it is not clear whether a
long sequence can still give good recall and precision.

A third problem is how to utilize locations that are
given as polygons or lines, rather than just points.

A fourth research direction is to combine our ap-
proach with other approaches, such as the feature-
based approach of [13], topological similarity (e.g., [3])
or ontologies (e.g., [7, 8, 16]).
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